Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes

نویسندگان

  • Zhibin Wang
  • Chongzhi Zang
  • Kairong Cui
  • Dustin E. Schones
  • Artem Barski
  • Weiqun Peng
  • Keji Zhao
چکیده

Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development.

Histone deacetylases (HDACs) regulate histone acetylation levels by removing the acetyl group from lysine residues. The maize (Zea mays) HDACHDA101 influences several aspects of development, including kernel size; however, the molecular mechanism by which HDA101 affects kernel development remains unknown. In this study, we find that HDA101 regulates the expression of transfer cell-specific gene...

متن کامل

Global position and recruitment of HATs and HDACs in the yeast genome.

Chromatin regulators play fundamental roles in the regulation of gene expression and chromosome maintenance, but the regions of the genome where most of these regulators function has not been established. We explored the genome-wide occupancy of four different chromatin regulators encoded in Saccharomyces cerevisiae. The results reveal that the histone acetyltransferases Gcn5 and Esa1 are both ...

متن کامل

Network of phosphatases and HDAC complexes at repressed chromatin

Tight regulation of gene expression is achieved by a variety of protein complexes that selectively bind chromatin, modify it and change its transcription competency. Histone acetylases (HATs) and deacetylases (HDACs) play an important role in this process. They can generate transcriptionally active or inactive chromatin through the addition (HATs) or removal (HDACs) of acetyl groups on histones...

متن کامل

Genome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis

Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...

متن کامل

Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete geno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2009